Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases.

نویسندگان

  • Brian S Finlin
  • Shawn M Crump
  • Jonathan Satin
  • Douglas A Andres
چکیده

Rem, Rem2, Rad, and Gem/Kir (RGK) represent a distinct GTPase family with largely unknown physiological functions. We report here that both Rem and Rad bind directly to Ca2+ channel beta-subunits (CaV beta) in vivo. No calcium currents are recorded from human embryonic kidney 293 cells coexpressing the L type Ca2+ channel subunits CaV1.2, CaV beta 2a, and Rem or Rad, but CaV1.2 and CaV beta 2a transfected cells elicit Ca2+ channel currents in the absence of these small G proteins. Importantly, CaV3 (T type) Ca2+ channels, which do not require accessory subunits for ionic current expression, are not inhibited by expression of Rem. Rem is expressed in primary skeletal myoblasts and, when overexpressed in C2C12 myoblasts, wild-type Rem inhibits L type Ca2+ channel activity. Deletion analysis demonstrates a critical role for the Rem C terminus in both regulation of functional Ca2+ channel expression and beta-subunit association. These results suggest that all members of the RGK GTPase family, via direct interaction with auxiliary beta-subunits, serve as regulators of L type Ca2+ channel activity. Thus, the RGK GTPase family may provide a mechanism for achieving cross talk between Ras-related GTPases and electrical signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

14-3-3 and calmodulin control subcellular distribution of Kir/Gem and its regulation of cell shape and calcium channel activity.

Individual members of the RGK family of Ras-related GTPases, which comprise Rad, Gem/Kir, Rem and Rem2, have been implicated in important functions such as the regulation of voltage-gated calcium channel activity and remodeling of cell shape. The GTPase Kir/Gem inhibits the activity of calcium channels by interacting with the beta-subunit and also regulates cytoskeleton dynamics by inhibiting t...

متن کامل

L-type calcium channel alpha-subunit and protein kinase inhibitors modulate Rem-mediated regulation of current.

Cardiac voltage-gated L-type Ca channels (Ca(V)) are multiprotein complexes, including accessory subunits such as Ca(V)beta2 that increase current expression. Recently, members of the Rad and Gem/Kir-related family of small GTPases have been shown to decrease current, although the mechanism remains poorly defined. In this study, we evaluated the contribution of the L-type Ca channel alpha-subun...

متن کامل

Phosphorylation of critical serine residues in Gem separates cytoskeletal reorganization from down-regulation of calcium channel activity.

Gem is a small GTP-binding protein that has a ras-like core and extended chains at each terminus. The primary structure of Gem and other RGK family members (Rad, Rem, and Rem2) predicts a GTPase deficiency, leading to the question of how Gem functional activity is regulated. Two functions for Gem have been demonstrated, including inhibition of voltage-gated calcium channel activity and inhibiti...

متن کامل

Adrenergic signaling controls RGK-dependent trafficking of cardiac voltage-gated L-type Ca2+ channels through PKD1.

RATIONALE The Rad-Gem/Kir-related family (RGKs) consists of small GTP-binding proteins that strongly inhibit the activity of voltage-gated calcium channels. Among RGKs, Rem1 is strongly and specifically expressed in cardiac tissue. However, the physiological role and regulation of RGKs, and Rem1 in particular, are largely unknown. OBJECTIVE To determine if Rem1 function is physiologically reg...

متن کامل

Similar molecular determinants on Rem mediate two distinct modes of inhibition of CaV1.2 channels

Rad/Rem/Rem2/Gem (RGK) proteins are Ras-like GTPases that potently inhibit all high-voltage-gated calcium (CaV1/CaV2) channels and are, thus, well-positioned to tune diverse physiological processes. Understanding how RGK proteins inhibit CaV channels is important for perspectives on their (patho)physiological roles and could advance their development and use as genetically-encoded CaV channel b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 24  شماره 

صفحات  -

تاریخ انتشار 2003